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Flows of incompressible, electrically conducting liquids along ducts with electrically 
insulating or weakly conducting walls situated in a strong magnetic field are analysed. 
Except over a short length along the duct where the magnetic field strength and/or 
the duct cross-sectional area vary, the duct is assumed to be straight and the field to 
be uniform and aligned at right angles to the duct. Magnitudes of the field strength 
B, and the mean velocity V are taken to be such that the Hartmann number M % 1,  
the interaction parameter N ( =  M2/Re)  > 1 (Re being the Reynolds number of the 
flow) and the magnetic Reynolds number R, < 1. 

For an O( 1 )  change in the product VB, along the duct across the non-uniform region, 
it is shown that: 

(i) In  the non-uniform region the streamlines and current flow lines follow surfaces 
containing the field lines satisfying I B-lds = constant, the integration being carried 
out along the field line within the duct; these surfaces are equipotentials and isobarics. 
This leads to 

(ii) a tube of stagnant, but not current-free fluid at the centre of the duct parallel 
to the field lines around which the flow divides to bypass it. To accommodate this flow, 

(iii) the usual uniform field/straigbt duct flow is disturbed over very large distances 
upstream and downstream of this region, the maximum length O(duct radius x M i )  
occurring in a non-conducting duct ; 

(iv) a large pressure drop is introduced into the pressure distribution regardless of 
the direction of the flow, the effect being most severe in a non-conducting duct, where 
the drop is O(duct radius x (uniform fieldlstraight duct pressure gradient) x M i ) ;  

(v) in the part of the duct with the lower value of VB, a region of reverse flow occurs 
near the centre of the duct and the stagnant fluid. 

1. Introduction 
The main aim of this paper is to examine theoretically the effects of non-uniform 

magnetic fields and electrical conductance of the pipe walls on the steady flow of 
a conducting liquid along a uniform-bore duct when both the Hartmann number M 
and the interaction parameter N are very large, so that the flow is effectively inviscid 
and inertialess, and when the magnetic Reynolds number R, < 1.  It may be regarded, 
therefore, as complementing analyses by Walker & Ludford (1974a, 1975) of the flow 
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along two semi-infinite circular pipes of different radii connected by an expansion 
when the pipe wall is non-conducting and weakly conducting (hereafter referred to as 
thin-walled) respectively. [Henceforth these papers will be referred to as W & L 
(1974 a)  and W & L (197~9.1 In  fact, in regions of non-uniform field and/or varying 
duct cross-section in these types of duct, the streamlines of the flow follow equipoten- 
tial surfaces containing the magnetic field lines satisfying B-Ids = constant, the 
integration being carried out along the field lines inside the duct. This is a powerful 
result which allows at least the approximate motion of the fluid to be deduced quickly 
for a wide range of situations. The current-density streamlines also lie on these surfaces, 
which are therefore also isobaric surfaces. 

Unfortunately, such general results cannot be deduced for the flow in a duct with 
highly conducting walls. Walker & Ludford (1974 b )  examined the flow in such a duct 
of variable cross-section situated in a uniform field. The present authors hope to treat 
the complementary problem of the flow along a uniform-bore duct situated in a non- 
uniform magnetic field in a subsequent paper. 

The emphasis on inertialess flows stems from a report by Hunt & Hancox (1971), in 
which they estimate the pressure drops in the liquid-metal heat-transfer circuit, part 
of which lies in regions of intense magnetic field, of a proposed design for a nuclear 
fusion reactor. Typical values of M and N are quoted as 0(104), indicating that viscous 
and inertia forces will indeed be negligible compared with electromagnetic forces. 
They point out, though, that data on such flows, particularly in thin-walled ducts, are 
scarce. The relevance of this work, together with work by Holroyd (1976)) Walker 
and co-authors (previously cited literature and the references therein) and several 
other authors, in fusion-reactor technology has recently been examined by Hunt & 
Holroyd (1977). 

In  common with all duct flow analyses at high M ,  it will be assumed that the flow 
can be subdivided into an inviscid core region surrounded by Hartmann layers adjacent 
to walls having a significant normal component of flux density and singular regions 
a t  places where Hartmann layers cannot exist (e.g. where the magnetic field lines are 
tangential to the duct wall). For analytical purposes, it will be assumed that the flow 
in these singular regions does not significantly affect the core flow. 

The relevant equations and boundary conditions for the analysis are set out in $2. 
In  $ 3 the flow in a non-conducting variable-area duct situated in a non-uniform mag- 
netic field is examined with particular attention focused on the case of a straight 
circular pipe and a non-uniform field which consists of uniform transverse fields of 
different strengths upstream and downstream. It is shown that the flow behaves, 
qualitatively, in a similar manner to the flow in Walker & Ludford’s corresponding 
problem. In the region of non-uniform field (or variable duct area) the flow divides 
to bypass a tube of stagnant fluid parallel to the field lines which forms around the 
centre of the duct. To accommodate this flow, the flow that normally exists when the 
field is uniform and the duct is straight is realized only at very large distances (of 
order duct radius x M t )  upstream and downstream of the non-uniform region. A pair 
of trapped eddies forms near the stagnant fluid in the region of weaker uniform field 
(or larger duct cross-section). Their presence is intimately connected with a current 
flow along the duct which also introduces a pressure drop of order duct radius x (uni- 
form fieldlstraight duct) pressure gradient x M t .  

In $ 4  the corresponding flow in a duct with very thin conducting walls (a thin-walled 
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duct) is considered. It turns out to be similar to that in the non-conducting duct but the 
flow is disturbed over a shorter distance and the pressure drop is smaller relative to the 
usual pressure gradients. 

Finally, in Q 5 limitations of the analysisand someof itsnone-too-obvious applications 
are mentioned. The effects of increasing the wall conductivity are discussed and some 
comparisons are made with flows in which inertial effects are present. 

2. Governing equations and boundary conditions 
The derivation of the equations governing the steady motion of an isotropic, 

electrically conducting, incompressible liquid in the presence of a steady magnetic 
field B* when the magnetic Reynolds number R, = p V a  < I may be found in 
several texts, e.g. Shercliff (1965, chap. 2); they are 

pv*.Vv* = -Vp+j*AB*+qV2v*, j* = u(-V#*+V*AB*), (2 . la ,b )  

V.v* = V.j* = V.B* = 0, V A B *  = 0, (2.1 c-f ) 

where v*, p ,  j* and $* represent the velocity, pressure, electric-current density and 
electric potential respectively and p, cr, 7 and ,u are respectively the fluid properties 
density, electrical conductivity, viscosity and permeability. 

For the following analysis (2.1 a-f) will be expressed in non-dimensional form in 
terms of p, cr, 7, the mean velocity of the flow V ,  the hydraulic radius of the pipe a and 
the maximum uniform flux density B, of the applied magnetic field: 

N-1v.Vv=-Vh+jAB+M-2V2v, j = - V $ + V A B ,  (2.2a, b )  

V.v = V.j = V.B = 0, V A B = 0, (2.2 c-f ) 

where v = v*/V, B = B*/B,, j = j*/aVBo, $ = $*/aVB,t and h =p/pV2N. Here 
M = aB,(cr/y)& is the Hartmann number and N = crB2a/pV is the interaction 
parameter. 

At this stage it will be assumed that M and N are sufficiently large for viscous and 
inertial effects to be ignored, so that ( 2 . 2 ~ )  reduces to 

Vh=jAB, (2.3) 

but additional constraints will be placed on them later ($5.1). An important implica- 
tion of this approximation is that all the governing equations of the flow (2.2b-f) and 
(2.3) are now linear and hence the fluid and current flows are reversible. For con- 
venience the uniform magnetic fields will be taken to be directed along the y axis and 
the fluid will move in the direction in which the product VBo decreases, this also being 
the direction of the x axis. 

For all types of duct the boundary condition on velocity at  the boundary of the 
core flow, neglecting O(M-l) terms, is 

v, = 0, (2.4a) 

where A denotes the unit normal to the wall directed into the fluid. The electrical 
boundary conditions depend on the type of duct; at  a non-conducting wall Hunt & 

t Walker & Ludford define their electric potential as minus that defined here. The present 
terminology is consistent with the usual definition of the strength of an irrotational electric field 
88 -V$*. 
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Ludford (1 968) showed that the normal components of current density and vorticity 
are related by 

j ,  = sgn (A. B) M-l(V A v),, (2.4b) 

whilst at a thin wall it may be shown that 

j ,  = sgn (A .  B) cDV2q5, ( 2 . 4 ~ )  

where 0 = (electrical conductivity of wall) x (wall thickness)/cru is the conductance 
ratio and lies in the range 1 & @ & M-1 and the Laplacian operator does not contain 
the derivative a2/an2. 

3. The core flow in a non-conducting duct 
3.1. Longitudinal subdivisions of the $ow 

Since it is assumed that far upstream and downstream both the field strength B, and 
the duct cross-section are constant, the flow eventually realized far from the non- 
uniform region will be that deduced by Shercliff (1956) (hereafter referred to as the 
fully developed flow), in which the core flow variables j, and h are O(M-l) and v, and 
# are O(1) (the axes being those defined above). To a good approximation the z com- 
ponent of (2.2b) may be written as d#/dz = v, B,, so, should there be an O(1) change 
in field strength or duct cross-section and hence mean velocity along the duct, then 
there will also be an O(1) change in potential, which in turn suggests a longitudinal 
current flowj,. Equation ( 2 . 2 4  implies that, to match the O(M-1) transverse current, 
j, must be O(Z/M), where 1 is the distance over which j, exists, whereas (2.2b) 
implies that j ,  is O(l/Z). These two results can be reconciled only if 1 = O ( M t ) ,  so 
thatj,  = O(M-4). 

So far the length over which the field strength or duct area changes has not been 
specified. Three possibilities come to mind: 

(i) an O(1) length, in which case the longitudinal current flow could extend for 
O(M4) distances upstream and downstream of the non-uniform field region, 

(ii) an O(M4) length, so that the longitudinal current flow is largely confined to 
the non-uniform region, 

(iii) an O ( M )  length. 
In  this paper only case (i) will be considered because then the fully developed flow 

is most severely disturbed; as the length of the non-uniform region increases the 
effects on the flow are attenuated. 

Tentatively, then, the flow is subdivided into three sections, namely a region of 
length O( 1) where the field strength and/or the duct area vary flanked by regions of 
length O(M4) upstream and downstream where the field strength and duct area are 
uniform but where the flow may not be fully developed. In  the former region (2.2b) 
demands that the current densities are O(M-*) but in the long regions only the longi- 
tudinal current-density component is O(M-t) ,  the other components being O(M-l). 
The velocity is assumed to be O( 1 )  throughout. 

3.2. Analysis of theJlow in the O(1) length non-uniform region 

Vq5 = v A B + 0(M-4) + . . . , 
Since the current density here is O(M-t) ,  (2.2b) may be written as 
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which suggests that the fluid behaves as if it were perfectlyconducting (Shercliff 1965, 
$3.4). It follows that the magnetic analogies of the Kelvin and Helmholtz theorems 
about vorticity and circulation may be used to show that (i) the area 6A enclosed by 
a loop of fluid particles moving with the flow will vary such that 

B .6A = constant (3.2) 

and (ii) a line of fluid particles initially aligned along a magnetic field line will remain 
so. Now for any tube of elemental cross-sectional area SA(s) in the fluid whose surface 
generators are coincident with magnetic field lines 

6A(s) .ds = constant, 

where s is the distance measured along a field line and the integration is carried out 
along field lines inside the duct. Combining this with (3.2) yields the following im- 
portant result: the streamlines lie on surfaces containing all the field lines satisfying 

s 

B-lds = constant. s (3.3) 

Furthermore, (3.1) implies that these are equipotential surfaces since $ can vary only 
in the direction perpendicular to both the streamlines and the field lines. Equation (3.3) 
is a completely general result but note that the velocity distribution over the surface is 
not uniquely determined: it depends on the flow upstream and downstream of the 
non-uniform region. A formal mathematical proof of (3.3) has been derived inde- 
pendently by Kulikovskii (1973).t 

Asimilar result can be derived for the O(M-4) current flow in this region as follows. 
Equation (2.3) implies that h may vary only in directions perpendicular to both the 
current-density streamlines and the field lines. Between two isobaric surfaces on 
which the pressure is h and h + ah, continuity of current flow requires 

j, Sn(s) ds = constant, s (3.4) 

wherej,is the component of current density normal to the field lines, and, by definition, 
tangential to the isobaric surfaces 6n(s) is the distance between the isobaric surfaces 
(which varies along the field lines) and the integration is carried out along field lines in- 
side the duct. The current flow normal to the duct wall at  the edge of the core, necessary 
to satisfy boundary condition (2.4 b) ,  can be neglected since it is only O(M-'). Although 
dn(s) varies, 6h = j ,B6n(s) does not and so (3.4) may be rewritten as 

6h B-lds = constant. 

Thus the current flow is also along the surfaces d e h e d  by (3.3) and they are now 
isobaric surfaces. In  passing, it may be noted that this method can also be used to 
derive the formef result for the fluid motion. 

t He also derives an expression for the pressure drop along the duct by assuming that the 
currents are O(M-') rather than O(M-4). Consequently he does not derive the other result 
derived here for the current flow along the surfaces defined by (3.3). Surprisingly, he does not 
point out that his solutions do not show how the fluid is distributed on the surfaces. 

s 



476 R. J .  Holroyd and J .  S. Walker 

This last result was derived mathematically for the special case of a uniform field 
by Hunt & Ludford (1968). Upon putting j = 0, or more generally I j I .< IvI , they then 
derived (3.3)) again for the uniform field case. 

3.3. Analysis of theJEow in the O(M*) length regions 

In  these regions, upstream and downstream of the non-uniform region, the field 
strength and duct cross-section are taken as constant. Shercliff's fully developed flow 
is not realized in the immediate vicinity of the non-uniform region but there is a gradual 
transition to it over an O(M4) length. This flow may be analysed in the same manner 
as in W & L (1974a), namely by compressing the x scale by defining X = xM-* and 
then expressing the core variables as power series in M-4 and selecting the leading 
terms (e.g. j = j(0) + j(4)M-* + j(l)M-' + . . . and j(0) = 0, leaving j(4) as the leading term). 
The governing equations for the flow will be derived for an arbitrarily shaped duct of 
uniform cross-section but, because a general solution is not possible, their solution 
for a circular duct of radius R will be given, this being the most useful shape from a 
practical point of view. 

From (2.2b) and (2.3) it follows that a#O)/ay = ah(J)/ay = 0 so both #O) and h(*) are 
functions of X and z only. The same equations may now be used to show that 

(3.5 a-c) 

where Bu < 1 is the (uniform) field strength and P ( X ,  z )  and & ( X ,  z )  are functions of 
integration which are zero for a symmetric duct. Boundary conditions (2.4a, b )  may 
now be written as 

(3.7a, b )  

respectively, where y = f (z )  represents either the upper or the lower wall of the duct, 
and after substituting (3.5a-c) and (3.6a-c) into (3.7a, b )  it may be shown that h(*) 
and qYo) satisfy 

v(4) U - v'Z3'f' = 0, j(1) , - j2:  '(1) f '  = -avp/az 

where g(z)  is the local height of the duct. 
For a circular duct of radius R, g = 2(R2- z2)* and these equations become 

Solutions to these equations must satisfy the symmetry conditions 

and approach the fully developed flow solutions as (XI -+GO, namely 
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where k is a constant whose value in the upstream pipe will be taken as zero. In 
addition they must satisfy the singularity conditions 

+ 0, (R2 - 9) Ph(4)/8z2 + 0 as I z I --f R ( 3 . 9 4  1 
near the singular regions at 121 = R. 

Taking R = B, = 1, X < 0 in the upstream pipe and R = 1 ,  0 < B, < 1 ,  X > 0 in 
the downstream pipe, (3 .3 )  implies that the flow must divide at the plane z = 0 as it 
leaves the upstream pipe and move towards those walls of the pipe at  which the field 
lines are tangential. Between the two halves of the divided main flow is left a volume 
of stagnant fluid, this being the only ‘flow ’ that is symmetric about the plane z = 0 
and has streamlines on the equipotential surfaces defined by (3 .3 )  (which would imply 
antisymmetric flow about the plane z = 0). Thus the upstream flow at X = 0- and 
the downstream flow at X = O+ are not continuous, but the solutions for each flow 
must satisfy the following matching conditions: 

#O)(O+, z )  = 0 for IzI < (R2- Bi)3, 
where 

2 = ( 1  - B,’(R’ - z’)}*. 

(3.9gl 

(3 .9h)  

( 3 . 9 4  

(3 .9A  

Equations (3 .99,  h)  represent matching of the streamlines and current flow lines and 
(3.9i) follows from the fact that v, and hence d$(o)/8z is zero in the range of z indicated. 

3.4. Numerics 

The numerical analysis for the regions of length O(M4) upstream and downstream of 
the non-uniform field region closely parallels the analysis given by W & L ( 1 9 7 4 ~ )  for 
similar regions in non-conducting pipes upstream and downstream of a non-conducting 
expansion or contraction. Solutions to ( 3 . 8 a , b )  may be obtained by separation of 
variables; writing 

( 3 . 1 0 4  qYo) = - (BY R)* @([) exp ( - AXR-SB;*), 

h(4) = B, H ( 6 )  exp ( - AXR-Q B i t ) ,  
where 

E = (1 - z p p ,  

(3.10 b )  

( 3 . 1 0 ~ )  

results in an eigenvalue problem consisting of the pair of ordinary differential equations 

(2 - g 2 )  HI’ - EHr = 4A( 1 - 6’) CD 

(2 - g2)* (ECDr’ - W )  = 4hE2( I - E2) H 

( 3 . 1 1 ~ )  

( 3 . l l b )  
) in 0 < 6 < i  

together with the conditions 

and 
H”-(-lH’-+O, < - - W - + O  as c - + O  (3.12u, b )  

C D = H ’ = O  at ( = 1 .  (3 .12c,d)  

Since the constants R and B, have now disappeared, the eigenvalues and eigenfunctions 
apply to  both t h e  upstream and the downstream region of length O(M4). In  fact they 
apply to a circular non-conducting pipe of any diameter and with any uniform trans- 
verse magnetic field, including the pipes in the problem treated by W & L ( 1 9 7 4 ~ ) .  
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Equations(3.11)and(3.12)areidentical toequations (12)and(13)in W &L(1974a),so 
that the first sixty positive eigenvalues for the present problem are those given in 
table 1 in W & L ( 1 9 7 4 ~ )  while the eigenfunctions can be generated in the manner 
described in W & L (1974~) .  

The solutions in the upstream and downstream regions of length O(M4) are now 
approximated by truncated eigenfunction expansions. The eigenvalues occur in pairs 
A,j (j = 1,2,3,  .. .), where Lj = - A ,  < 0, H-, = Fj and = - a,. The exception is 
A, = 0, which is a double eigenvalue corresponding to fully developed flow (3.9c,d). 
Positive eigenvalues Aj are excluded in the upstream eigenfunction expansions and 
negative eigenvalues are excluded in the downstream expansions, because they 
make # and h unbounded as X + T 00 respectively. Since R = B, = 1 for the upstream 
region, its eigenfunction expansions are 

h(t) = -QnX+ ajHjexp(hjX), (3.13 a) 
00 

j=l 

and, since R = 1 for the downstream region, its eigenfunction expansions are 
60 

j=1  
hct) = - Q mBzX+k+BY C bjHjexp( -AjXB;t), 

(3.13 b )  

( 3 . 1 3 ~ )  

60 

j = 1  
qW= &mB,[arcsinz+z(1-z2)~]-B$ bjcPjexp(-hjXB;)). (3.13d) 

The 121 unknown coefficients aj, k and b, in these expansions are now determined by 
satisfying the matching conditions (3.9g-i) in a least-mean-square sense. The integral 
of the squares of the errors for these conditions is 

- ~ ( J ) ( O - , Z ) ] Z ) ~ ~ +  J - * [~P)(o+, z ) 1 2 d 5 ,  ( 3 . 1 4 ~ )  

where z is given as a function of 5 by (3. IOc), 2 is given as a function of z by (3.9j), while 

CI 

(3.14 b )  

The minimum over the functions (3.13) is given by 

aI/aaj = aI/ak = aI/abj = 0 for j = 1,2, ..., 60, ( 3 . 1 4 ~ )  

which are 121 linear equations for the 121 unknown coefficients. Simpson’s rule is used 
to evaluate the integrals of products of eigenfunctions which appear as coefficients in 
( 3 . 1 4 ~ )  with a step of 0.001 in 5 except on each side of E, where smaller, irregular steps 
are used. Once equations ( 3 . 1 4 ~ )  have been solved, the expansions (3.13) give h(t) and 
#,)in the two regions of length O(M4) and (3.4) and (3.5) give the other variables. 

Equations ( 3 . 1 4 ~ )  have been solvedfor the 121 coefficientsfor B, = 0*1,0.2, 0.3, ..., 
0.9, and special attention is focused on the coefficient k, whose physical meaning will 
be discussed in the next subsection. In  addition, for B, = 0.5 the valuesof $(O), vg), 
j$) and jp) at various points (X, z )  were determined numerically. The results will be 
presented and discussed in the next subsection. 
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Non-uniform 
Stagnant magnetic Trapped 

Magnetic field lines 
directed out 
of plane of paper 

FIGURE 1. Sketch on plane y = 0 of current-density flow lines associated with disturbed flow 
(lower half of diagram) and strectmwise velocity profiles and streamlines (upper half of diagram) 
in a non-conducting duct. Note that the length of the non-uniform field region is exaggerated. 

\ 

-4 
2 

FIGURE 2. Current-density flow lines just downstream of non-uniform field region (i.e. X > 0) in 
a non-conducting duct. -, core currents; -- -, Hartmann-layer currents. 
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3.5. Discussion of computed results for B, = 0.5, R = 1 
Figure 1 is a cross-section of the circular duct on the plane y = 0 showing the stream- 
lines and some velocity profiles of the flow and the current flow lines associated with 
the disturbed flow. Because the duct is symmetric j, E 0, so it follows from (3 .5)  and 
( 3 . 9 4  that these current flow lines are defined by curves satisfying h + 3n(B,/R) X 
= constant and are independent of y. The complete pattern of current flow lines can 
be obtained by superposing the flow lines of the O(M-1) uniform transverse current 
flow (the first flow lines then being curves satisfying h = constant). 

Upon closer examination the current flow just downstream of the non-uniform 
field region is as shown in figure 2 (the uniform transverse current component is still 
omitted) and its behaviour and effect on the flow may be illustrated by reference to 
the following. 

(i) The seven current flow lines between A and B and those labelled C, D and E ,  
which lie vertically above each other and represent current flow in the core on planes 
y = constant. 

(ii) The current flow lines C’, D’ and E’ on the plane y = 0, which enter the Hart- 
mann layer via the singular regions at y = 0, z = R and later reappear as part of the 
core current flow lines C ,  D and E respectively. (Also shown are several flow lines 
directly above C’, D’ and E’ on planes y = constant ( > 0) ,  which enter the Hartmann 
layer directly, but only the first parts of their paths in the Hartmann layer are shown 
to avoid confusion.) 

(iii) The Hartmann-layer currents C”, D” and E“, which contribute to the core 
current flow lines C, D and E respectively. 

The Hartmann-layer current due to the uniform O(M-’) transverse core current 
Aow is augmented by that entering along current flow lines such as C’ in order to 
tiatisfy boundary condition (2 .4  b )  because of the greatly increased vorticity there since 
the fluid is moving in a small part of the duct cross-section. However, because this 
fast-moving fluid does not fill the whole of the duct cross-section, current leaves the 
Hartmann layer as the vorticity decreases and flows across the core on a plane 
y = constant. Thus current flow line C’, for example, reappears as part of current flow 
line C. Since the current-density distribution is independent of y, further current flows 
into flow line C from C“ in the Hartmann layer to ensure that the current-density 
variation along flow line C is the same as that along those between A and B .  Signi- 
ficantly, the Hartmann-layer currents C”, D” and E“ flow in a direction corresponding 
to reverse flow in the core, thus giving rise to the trapped eddies. 

A further consequence of the current flow follows from the x component of ( 2 . 3 ) ,  
namely dh/dx = j, B,, where h and j ,  are here associated with only the disturbance 
current flow. Integrating this equation over the whole length of the duct gives the 
following result: 

upstream downstream 

(the contribution of the current in the non-uniform field region is O(M-1) and its 
neglect will be justified below). Now, a t  the downstream end of the non-uniform field 
region the total current flow from (or to) upstream lies between the planes y = -t B,, 
but on continuing downstream some of this current is redistributed to those parts 
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h M t  
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-0.6 

0 0.5 I .o 
9 ,  

FIGURE 3. (a) Pressure distribution along a non-conducting duct on the plane y = 0. - - -, z = 1; 
z = O . 7 ; - - - - - , ~ =  0 * 5 5 ; * . . - *  , 0 < z 6 0.3. (b)  Variation 

of the pressure drop Ah in a non-conducting duct with B,. 
--, = 0.9; -_ --, z = 0.8; ---, 
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FIUURE 4 (a). For legend see opposite. 

of the duct above and below these planes via the Hartmann layer (e.g. flow lines C', D' 
and E' in figure 2). Since j, > 0 upstream of the non-uniform field region and j, < 0 
downstream of it, 

upstresm downatream 

and hence Ah > 0. I n  fact, since j, = O(M-l) and flows over an O(M4) length, then 
Ah = O(M-l)  x O(M4) = O(M-4) (thereby justifying the neglect of the O(M-l) current 
in the non-uniform field region). I n  other words, the current flow associated with the 
disturbed flow gives rise to a pressure drop Ah of O(M-4) which is represented by the 
coefficient k in (3.9d) and ( 3 . 1 3 ~ )  and which can be seen in the computed pressure 
distribution aIong the duct in figure 3 (a).  

Figure 3 ( b )  shows how the pressure drop varies with B, in a uniform-bore circular 
pipe but comments on this graph will be reserved until the flow in the thin-walled duct 
has been considered. Computations of the pressure-drop variation in a circular pipe 
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V discussion 

FIQURE 4. (a) Sketch of streamlines in, and just downstream of, non-uniform field region in a 
straight pipe with stagnant fluid and trapped eddies omitted. ( b )  Sketch of streamlines in, and 
just downstream of, expansion joining two straight pipes of different radii with stagnant fluid 
and trapped eddies omitted (problem studied by W & L 1 9 7 4 ~ ) .  In the expansion each equi- 
potential surface is of constant height. 

with an expansion situated in a uniform field have not been carried out since it seems 
reasonable to believe that the results would differ only qualitatively from those in 
figure 3 ( b ) .  

The motion of the fluid in and just downstream of the non-uniform field region is 
shown in figure 4(a ) ,  where both the tube of stagnant fluid and the trapped eddies 
have been omitted and it can be seen how the fluid moves into a smaller part of the 
cross-section of the duct, thereby increasing its velocity and vorticity. For com- 
p&rison, and completeness, the corresponding flow in an expansion situated in a 
uniform field (Walker & Ludford’s problem) is shown in figure 4(b). 

Computed potential and velocity profiles are shown in figures 5 and 6 respectively. 
Asurprising feature of the flow, clearly visible in figure 1, is the increase in the velocity 
ofthe fluid at  the centre of the duct as it approaches the non-uniform field region. This 
may be explained by referring to figure 5, which indicates that for X < 0 the potential 
at the wall decreases (for z > 0) and consequently the potential gradient a$/az and 
hence the streamwise velocity v, = B;la$/az must also decrease near the wall. To 
maintain the flow rate along the duct the velocity of the flow near z = 0 must increase 
to compensate for the lower velocities near the walls, and this is reflected in the higher 
potential gradients near z = 0. When X > 0 the steepest potential gradients and velo- 
cities are found near the wall. These decrease as the potential gradually falls to its 
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FIQURE 5. Electric potential distribution in a non-conducting duct on the plane y = 0. --, 
1x1 = 0; ---, 1x1 = 0.01; --, 1x1 = 0.02; ---, 1x1 = 0.04; -----, 1x1 = 0.07; * . * * . * ,  

[XI 2 0.1. 

downstream fully developed flow value and the fluid velocity must therefore increase 
at the centre of the duct. 

Reversing the direction of the flow reverses the current flow and the rotation of the 
trapped eddies but leaves the streamline and current flow line patterns unchanged. In  
addition, there will still be a pressure drop of the same magnitude. 

3.6. The extent of the non-uniform region 

A knowledge of the extent of the non-uniform region has not been required in the 
above analysis and in figure 1 an arbitrary length has been chosen. In fact the length 
of the non-uniform region can be defined precisely only when the magnetic field is 
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PIQURE 6. Profiles of the velocity component v, in a non-conducting duct on the plane y 
Numerical errors preclude computation of profiles a t  X = 0- and O + .  Curves for other values 
L L ~  in figure 5 .  

' = 0. 
of x 

uniform and the duct comprises two straight pipes of different radii connected by 
an expansion whose walls have a finite slope in the streamwise direction at each 
end. In all other cases, especially when non-uniform magnetic fields are involved, 
the uniform/non-uniform boundary can be defined only in approximate terms as 
follows. 

In the non-uniform region 
= #O)( p - 1  ds) 

since the equipotential surfaces are defined by (3.3). If these surfaces are continued 
into the straight parts of the duct, where the field is uniform, they become planes 
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parallel to the centre-plane z = 0 defined by g(z ) /B ,  = constant. However, 
aqS0)/ax = O(M-4) in these regions whereas in the non-uniform region 

Since $@)’ is O(1) a convenient definition of the non-uniform region’s boundaries is 
where 

Further support for this definition follows from the fact that the analysis required to 
derive the results in $3 .2  and the analysis presented in $3.3 are invalid when 

la( JB-lds)/aXI = O(M-4) 
(Holroyd 1976, 99.4).  

4. The core flow in a thin-walled duct 
4.1. Relationship with the flow in a non-conducting duct 

For analytical purposes, the thin-walled duct will be defined as a duct whose con- 
ductance ratio @ lies in the range 

M-4 < a4 < 1. 

This is a more strict condition than that imposed by W & L (1975), namely 
M-’ < @ < 1, and the reasons for it will be given shortly. 

In  such cases Shercliff (1956) shows that the core flow variables v, and q5 are O( 1) 
whilst h andj, are O ( @ ) .  In  the non-conducting duct the former two quantities were 
again O(1) but the latter were O ( M - l ) ,  which suggests that the flow here may be 
analysed in a similar fashion with M replaced by @-l throughout. Thus, in a non- 
uniform region of length O( 1) the fluid and current will again move along the surfaces 
defined by (3.3). 

The reasons for the restrictions on the value of @ stated above can now be given. For 
the following analysis to be valid it is necessary that the path of least resistance for the 
current flow to cross the duct (from z > 0 to z < 0) should be via the fluid over the 
O(@-4) length rather than through the walls in a plane transverse to the direction of 
the mean flow. In  terms of the physical constants of the flow this condition may be 
expressed as 

cr x O(a2) conductivity of wall x wall thickness x O(a) 
O(a@-4) O(a)  

Y 

which reduces to @i < 1. 
In  the regions of length O(@-4) upstream and downstream of the non-uniform 

region, the leading terms in the expressions for the current density and velocity are 
still given by ( 3 . 5 ~ - c )  and ( 3 . 6 ~ - c )  and the velocity boundary condition ( 3 . 7 ~ )  still 
holds. The electrical boundary condition ( 2 . 4 ~ )  may be written here as 
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where f(z) defines the duct wall. For a circular duct of radius R, f = (R2-z2)*, and 
after combining (3.5a-c), (3.6a-c), ( 3 . 7 ~ )  and (4.1) it may be shown that #O)and h(*) 
must satisfy 

where X = x04. (The corresponding equations for a general duct shape are not given 
because of their cumbersome form.) 

As well as satisfying the symmetry conditions (3.9a, b) and the matching conditions 
(3.9g-i) at X = 0, (4.1 a, b) must satisfy the singularity conditions 

(R2-~2)*ah(4)/az+O, ( R 2 - z 2 ) * a p / a z + 0  as IzI + R  (4.3a, b )  

near the singular regions at z = R and approach the fully developed flow as 1 XI + 00, 

i.e. 

where k is a constant whose value in the upstream pipe will be taken as zero. 

#O) + B, Z, h(4) + - (Bi/  R )  X + k,  (4.3 c, a) 

4.2. Numerics 
The numerical analysis for the regions of length O(@4) upstream and downstream 
of the non-uniform field region closely parallels the analysis presented in 93.4 and 
the analysis given by W & L (1 975) for similar regions in thin-walled pipes upstream 
and downstream of a thin-walled expansion or contraction. Only the differences 
between the present analysis and that presented in $3.4 will be discussed here. 

Solutions to (4.2a, b) may be obtained by separation of variables; writing 

$(O) = - R* @(8) exp ( - AXR-i), 

h(*) = B,H(e) exp ( - AXR-i), 

where z = R sin 8, results in an eigenvalue problem consisting of the pair of ordinary 
differential equations 

a”’ = AsinBH, H” = Asinm in -in < 8 c 0 (4.4a, b )  

together with the boundary conditions (4.3), which reduce to 

H” = W = 0 a t  8 = -in, (4.5a, b )  

and the symmetry conditions 

H ‘ = @ = O  at 0 = 0 .  (4.5c,d) 

Since the forms of (4.4) and (4.5) are identical, addition leads to an equivalent 

S”” = hsin8S in -in < 8 < in (4.6a) 

eigenvalue problem consisting of the single ordinary differential equation 

together with the conditions 
S’ = 0 a t  8 = +in. (4.6b) 

The eigenvalues of the problem (4.6) are the dame as those of the problem (4.4) with 
(4.5), while the H and @ for the latter problem are given by the even and odd parts of S 
respectively . 
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10.6493 
34.7142 
72.5278 

124.09 18 
189.4061 
268.4707 
361.2857 
467.851 1 
588.1669 
7 22.2330 

870.0496 
1031.6164 
1206.9337 
1396.0014 
1598.8196 
1815.3879 
2045.7068 
2289.7761 
2547.5959 
2819.1661 

3104.4867 
3404.5579 
3716.3796 
4042.95 18 
4383.2746 
4737.3480 
51054 172 1 
5486.7468 
5882.0723 
6291.1486 

TABLE 1. First 30 positive eigenvalues for a thin-walled pipe. 

Equation ( 4 . 6 ~ )  is a special form of the Mathieu equation, but the tables for Mathieu 
functions that appear in the literature provide only the first pair of non-zero eigen- 
values to problem (4.6) (see W & L 1975). Approximate values of h can be found by using 
an eight-term asymptotic expression for large eigenvalues of the Mathieu equation, 
and the first thirty positive eigenvalues found in this manner are presented by W & L 
(1975). They conclude that these values are probably quite good since the first approxi- 
mate value agrees with the correct value to four significant figures. Efforts to use these 
approximate eigenvalues to generate numerically the eigenfunctions, which are needed 
to determine the unknown coefficients in the upstream expansions 

j=1 

and in the downstream expansions 
60 

j=l 
h( t )=  - B $ X + k + B ,  bjHjexp(-hjX), 

fin 

j = 1  

proved futile. Investigation revealed that the numerical integration of (4.6a), which 
generates the eigenfunctions Hi and Qj, is extremely sensitive to small changes in h and 
that the appropriate eigenvalues given by the eight-term asymptotic expression for 
large eigenvalues are not sufficiently accurate. 

More accurate eigenvalues are obtained for the problem (4.4) with (4.5) by the 
method used by W & L ( 1 9 7 4 ~ )  for non-conducting ducts. The interval from - in to 0 
is divided into ten equal segments and (4.4a, b )  are integrated separately for each 
segment using a fourth-order Runge-Kutta method with various initial conditions 
for each segment. These integrations give the coefficients in a set of 38 linear equations 
obtained by equating the values of H ,  H' ,  Q and CD' at the ends of adjacent segments 
and by satisfying conditions ( 4 . 5 ~ )  d).  The unknowns in these equations are the values 
of H and 0 at 8 = - &r and the values of H ,  H',  Q and CD' at 8 = - 0.45n, - O.40nr, . . . , 
-0.05n. The determinant of the coefficients is zero when a correct eigenvalue has 
been chosen, so that the value of this determinant serves as an error measure for 
eigenvalue guesses. An iterative scheme which uses linear interpolation to compute 
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FIGURE 7. (a) Pressure distribution along a thin-welled duct on the plane y = 0. - --, z = 1; 
-_ z = 0.9. - __  z = 0.8. t ,  _ _ -  z = 0.7.  - - - _- z = 0.55. . * * * * , 0 < z d 0.3. ( b )  Variation 
of the pressure drop Ah in a thin-walled duct with B,. 
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FIGURE 8. Electric potential distribution in a thin-walled duct on the plane y = 0. -, 1x1 = 0; 
, 1x1 = 0.1; --, (XI = 0 .2 ;  ---, 1x1 = 0.3;---- ,  1x1 = 0.4; I . . . . .  , 1x1 > 0.5. 

a new eigenvalue guess based on the two previous guesses with the smallest errors 
converges to fourteen significant figures within six iterations if it is started from the 
approximate eigenvalue and a slightly smaller second guess. The first thirty positive 
eigenvalues are given in table 1, 

The remainder of the numerical analysis to determine the coefficients uj ,  k and b, and 
the values of @O), v:), j!$andjil)at various points (X, z )  exactly parallels that given 
in $3.4 except for minor changes in (3.14u,b). In  (3.14u), the integration variable is 
0 instead of 6,  while the limits of integration for the first and second integrals are 
( -  &n, 0)  and ( 0 , O )  respectively, where 

B, 0 = - arccos - , R 

which replaces(3.14b).Equation(3.9j)againgivesZas a functionof z while z = Rsin8. 
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FIGURE 9. Profiles of the velocity component v, in a thin-walled duct on the plane y = 0. Numerical 
errors preclude computation of profiles at X = 0- and O+. Curves for other values of X as in 
figure 8. 

4.3. Discussion of computed results for B, = 0.5, R = 1 

The pressure distribution along the duct and the potential and velocity distributions 
are shown in figures7 (a) ,  8 and 9 respectively. Qualitatively they vary in much the 
same way as the corresponding variables in the non-conducting duct. 

Again, a pressure drop Ah is introduced into the pressure distribution and its 
dependence on B, in a uniform-bore circular duct is shown in figure 7 (b).  Unlike the 
corresponding pressure drop in the non-conducting duct, which increases as B, 
decreases (figure 3 b) ,  here Ah initially increases and then decreases as B, decreases. 
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The reason for this difference lies in the different electrical boundary conditions for 
the two ducts. Expressed in terms of the streamwise velocity component, for the non- 
conducting duct (3.7 b )  becomes 

p = --(RZ-z2)*- 1 a v p  
z ax 

and for the thin-walled duct (4.1) becomes 

In  the non-conducting duct the amount of the current associated with the disturbed 
flow that enters the Hartmann layer depends only on the vorticity of the fluid. In  the 
thin-walled duct the amount of the corresponding current that enters the wall is 
governed by the velocity and the vorticity and these terms have opposite signs: a larger 
positive velocity term implies a larger but negative vorticity term. Thus the size of 
the pressure drop depends upon the relative magnitude of these two terms. 

Considered with the description in 53.5 of the current flow downstream of the non- 
uniform region, the fact that less of the disturbance current is needed to satisfy the 
relevant boundary condition implies that the currents in the walls such as C" in 
figure 2, and hence thereverse flow velocities, must be larger than in the non-conducting 
duct. The fact that even less of the current is syphoned off as B, decreases points to 
even larger reverse flows. 

5. Final remarks 
5.1. Limitations of the analysis 

Restrictions must be imposed on the values of B, and R in the downstream part of the 
duct to ensure that the divided flow in the non-uniform region does not become part 
of the boundary layers of local width and height O(R(B,RM)-8) x O(R(B,RM)-i) 
formed where the field lines are tangential to the duct wall (B,RM is the local Hart- 
mann number). Equation (3.3) implies that the fluid has been squeezed into a region of 
maximum height B, by the time it leaves the non-uniform region and so the required 
condition is 

B, B R(RB, M ) i ,  i.e. Bt/R B M-*. 

In  $ 2  it was assumed that M-21V2vl < Ij A BJ and N-llv.Vvl < j A B. Now the 
velocity gradients throughout the core flow are O( 1 )  in the present approximation 
even though in the non-uniform region the velocities are larger and the length scale 
of variations in the velocity is smaller than upstream or downstream of it. Therefore, 
in a non-conducting duct where Ij( is O(M-4) at most, the first condition is auto- 
matically satisfied and the second one requires 

N 9 M i .  

In  a thin-walled duct where 1jI is O(Q8) the corresponding condition is N > Q-4. 
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5.2. The effect of increasing the conductance ratio 
Flows along ducts whose conductance ratio @ has a maximum value restricted by 
Q4 4 1 have been examined in this paper. As explained in $4.1, this restriction on Q, 

ensures that the circulating currents associated with the disturbed flow are confined 
to the fluid over a long length of the duct rather than flowing through the conducting 
walls in planes transverse to the duct. It follows that as @ increases the circulating 
currents are short circuited via the duct walls. At the same time the transverse core 
currents increase to a maximum O( 1) as Q, -+ co. 

Section 3.5 described how the longitudinal current flow led to a large pressure drop 
being introduced into the pressure distribution as well as indirectly giving rise to the 
pair of trapped eddies. As these longitudinal currents are short circuited both pheno- 
mena disappear. Furthermore, as the transverse core currents increase to O(1) the 
pressure gradients increase and the analogy with a, perfectly conducting fluid, which 
led to the derivation of the important equation (3.3), no longer holds. The flow will 
not then follow the equipotential surfaces in the non-uniform region. It seems likely 
that as @ 3 co whatever disturbance there is to the flow will be slight and confined to 
the non-uniform region. 

High-N flows have been studied in this paper for the reasons given in $1. MHD 
literature does not appear to contain any extensive work on low-N flows for compari- 
son, but some idea of the probable difierences in the flows can be obtained from 
workby Shercliff (1962, §§2.3.1,3.3.3; 1965, S4.1.4)andKit etal. (1970).Bothconsider 
rectangular duct flows with a central region of uniform transverse field flanked by 
regions of decreasing or zero field and disturbances in the flow invariant in the direction 
of the field. 

For non-conducting ducts their conclusions are similar. An O( 1) circulating current 
is set up over an O(1) length in the regions of maximum field gradients and these 
currents lead to slight velocity perturbations in the same region, the fluid moving 
away from the centre of the duct (regardless of its direction of flow). For inviscid flows, 
Shercliff shows the fractional velocity changes to be O(&N) for N < 2. 

Kit et al. retained viscous terms in the equation of motion and obtained solutions 
by integrating it numerically for two sets of values of M ,  N and Re, namely 40,40 and 
40 and 63.25, 20 and 200. Their results show that as Re increases, and hence viscous 
effects decrease, the vorticity created as the flow enters the field is carried downstream 
and reinforces that created at  exit from the field. 

In  addition, they calculate the flow in a duct where CD + 00 for the f i s t  set of M ,  N 
and Re values quoted. As in the non-conducting duct a longitudinal current flow is 
formed but there is very little disturbance to the flow, presumably because the trans- 
verse core currents are now more dominant. This part of their work, taken with the 
statements at the end of $5.2, suggests that as @+00 changes in N will have little 
effect on the flow. 

5.4. Conclusions 
Although two specific problems have been examined at  length in this paper, many of 
the ideas and concepts involved are of a general nature. Only the detailed mathematics 
would be changed, for example, if the circular duct were replaced by a diamond-shaped 

5.3. LOW-N$OWS 
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one. Such studies would be of great practical interest, especially for thin-walled ducts, 
because it has been shown that, for given values of the pressure gradient, conductance 
ratio and cross-sectional area of a straight duct situated in a uniform transverse 
magnetic field, the flow rate increases as the duct is elongated in the direction of the 
field lines (Hunt & Hancox 1971). It is quite possible, therefore, that the pressure drop 
created by a non-uniform field, for example, might vary with the shape of the duct 
cross-section. 

There are, however, some cases where the present ideas run into difficulties, Con- 
sider, for example, two semi-infinite pipes of equal radii in a uniform transverse 
magnetic field which are offset from each other in a plane parallel to the field and con- 
nected by a short pipe of the same radius such that it forms obtuse angles with them. 
This is simply a variable-area duct problem since when viewed in a direction parallel 
to the long pipes the cross-section of the connecting pipe is elliptical. Decreasing both 
angles to 90" produces a singular situation: the flow is squeezed into the boundary 
layers of the connecting pipe and the problem becomes one of jet flows in a parallel 
field. 

Another problem, perhaps related to that of defining the extent of the non-uniform 
region ($3.6), is the nature of the velocity profile near the moving fluid/stagnant fluid 
boundary in the non-uniform region. Numerical problems associated with the trun- 
cated eigenfunction solutions preclude computation of velocity profiles in this critical 
region. J.S.W. believes the velocity gradients to be large yet O(1) while R.J.H. believes 
that a shear layer of thickness 0(M-4)  might separate the moving and stagnant fluid. 
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